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Abstract

Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, espe-
cially when guided by explicit chain-of-thought (CoT) reasoning that verbalizes intermediate
steps. While CoT improves both interpretability and accuracy, its dependence on natural
language reasoning limits the model’s expressive bandwidth. Latent reasoning tackles this
bottleneck by performing multi-step inference entirely in the model’s continuous hidden state,
eliminating token-level supervision. To advance latent reasoning research, this survey provides
a comprehensive overview of the emerging field of latent reasoning. We begin by examining
the foundational role of neural network layers as the computational substrate for reasoning,
highlighting how hierarchical representations support complex transformations. Next, we
explore diverse latent reasoning methodologies, including activation-based recurrence, hidden
state propagation, and fine-tuning strategies that compress or internalize explicit reasoning
traces. Finally, we discuss advanced paradigms such as infinite-depth latent reasoning via
masked diffusion models, which enable globally consistent and reversible reasoning processes.
By unifying these perspectives, we aim to clarify the conceptual landscape of latent reasoning
and chart future directions for research at the frontier of LLM cognition. An associated GitHub
repository collecting the latest papers and repos is available at: LatentCoT-Horizon.
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Figure 1. Explicit reasoning transmits discrete tokens (≈ 15 bits each), whereas latent reasoning
exchanges full 2560-dimensional FP16 hidden states (≈ 40, 960 bits each), revealing a ∼2.7 × 103-
fold bandwidth gap between the two approaches.
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1. Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities in performing
reasoning tasks, in some cases even exceeding human-level performance [47, 64, 82, 133]. LLMs
often reason more effectively when they produce a Chain-of-Thought (CoT) [115], spelling out
each intermediate step in natural language before arriving at a final answer.

Initially viewed as a logical extension to prompt engineering, CoT gained traction once
supervised instruction tuning exposed models to many annotated reasoning traces. It then
became the norm when RL rewarded answer correctness [49], which encouraged models to
generate their own effective chains of thought. As a result, LLMs that “think in language before
answering” have attained remarkable performance improvements. This principle now anchors
leading reasoning models, including the Qwen3 series [118], DeepSeek-R1 [41], and Gemini 2.5
series [32].

However, just as humans do not always rely on language for their cognitive processes,
LLMs spend most of their processing budget in the latent space. Enforcing a CoT to operate
with natural language can constrain a model’s expressive range and can also impose redun-
dant computation. Latent Chain-of-Thought (Latent CoT) has the potential to overcome these
limits [23, 44]. Unlike its explicit counterpart that relies on discrete tokens, latent CoT carries
reasoning in continuous internal representations, often via recurrent mechanisms within the
model. This offers richer expressivity and access to non-linguistic reasoning paths, potentially
unlocking new frontiers in model reasoning.

This survey examines the emerging landscape of Latent CoT and its potential to surpass
language-based reasoning constraints. While explicit CoT forces thoughts into a string of tokens,
Latent CoT shifts the entire reasoning process into the model’s continuous representational
space. The aim is to expand expressiveness and raise the performance ceiling: freed from a finite
vocabulary, a model can explore reasoning trajectories with no direct linguistic equivalent. We
categorize and analyze the technical approaches that leverage these continuous representations
to achieve more advanced reasoning.

The structure of this survey is designed to provide a comprehensive understanding of Latent
CoT and its various implementations. Our taxonomy breaks this down in Figure 2. We begin
by establishing a general formulation that captures most Latent CoT implementations, before
classing techniques into more specific categories. These categories can be broadly divided
into two types: 1) vertical recurrence for expanding computational depth, and 2) horizontal
recurrence for increasing sequential capacity. Vertical recurrence applies feedback loops to
activation values, and can be thought of ‘activation-based’ reasoning [22, 71]. Alternatively,
horizontal recurrence uses hidden states to propagate context across long sequences of reasoning
trajectories [87, 100]. We then explore fine-tuning strategies designed to compress or internalize
explicit reasoning traces, which concludes the review of Latent CoT implementations.

This sets the stage for understanding the mechanistic interpretability of latent reasoning to
understand how these processes are realized within neural networks. This section examines the
foundational role of network layers as the primary computational substrate for reasoning [92,
137]. We explore the theory of Layer Specialization, which posits that different layers develop
distinct, hierarchical functions—from feature extraction in shallow layers to complex logical
operations in intermediate layers and final integration in deep layers—collectively forming
an implicit computational pipeline analogous to an explicit CoT. Explicit CoT comes with the
benefit of intermediate tokens which offers a degree of post-hoc interpretability, and we similarly
aim to uncover the mechanisms that enable latent reasoning.
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General Framework

Connections to Explicit
Chain-of-Thought

Latent Reasoning Updates
of Diffusion Models

Latent Reasoning (§3)

Activation-based
Recurrent Methods

Architectural Recurrence
Universal Transformer [22], CoTFormer [71],
Recursive Transformer [2], AlgoFormer [29], Recurrent-Depth [31]

Training-induced Recurrence
Coconut [44], CODI [91], VO-VAE [98], CCOT [16], Decomposes Reasoning [50],
Light thinker[134], Filler Tokens [79], Pause Tokens [37], Planning Token [110]

Training Strategies
for Recurrent Reasoning

MIDAS [85], Looping-Inspired Regularization [86],
Stepwise Internalization [23], Coconut [44], RELAY [127]

Applications and Capabilities
Looped Architectures [35, 88] , Looped Transformers [21], Planning Tokens [110],
Decomposes Reasoning [50], Optimization and Meta-Learning [13, 30]

Temporal Hidden-
state Methods

Linear-State Recurrence
Linear Attention [53], RetNet [101], GLA [121], RWKV-6 [77],
HGRN-2 [80], Mamba-2 [20], DeltaNet [123], Gated DeltaNet [122]

Gradient-State Recurrence TTT [100], Titans [3], ATLAS [4], Gated delta [122], Soft Reasoning [140]

Training-induced
Hidden-State Conversion

SUPRA [69], MOHAWK [7], Llamba [8], LoLCATs [135], Liger [56]

Mechanical Interpretability (§4)

Do Layer Stacks
Reflect Latent CoT?

Layer Depth Influence
Reasoning Capabilities

Implicit Reasoning [128], Two-Hop Reasoning [42]

Layer Depth Serves As
The Primary Bottleneck

Looped Transformers [86], Log-Depth Transformers [70]

Clear Correspondence Between
Layer Depth and Resoning

MechanisticProbe [46], Back Attention [129],
Iteration Head [11], Matching Operation [114]

Mechanisms of Latent CoT
in Layer Representation

Shallow Layers
Micse [54], Feed-forward Layers [34], Unveiling Induction Heads [14], Hopping [9],
Loss Landscape Geometry [107], Memory Bottleneck [60], Unpacking Robustness [105],
Multi-hop Reasoning [120], Layer by Layer [96], Distributional Reasoning [89]

Intermediate Layers
Representation [95], Group Operations [117], Interpretability [108], Emergent Abilities [6]
Compositional Generalization [6], Factual Recall Behaviors [111], Test-time Compute [31]

Deep Layers
Interwoven Structured Knowledge [57], Layer by Layer [96], Gpt-2 [43], Inheritune [84],
Step-by-step [27], Lift [130], LLM Depth [19], Void in LLM [90], Curse of Depth [99]

Theory of Information Flow Causal Mediation Analysis [97], Edge of Generalization [106], Back Attention [129]

Limits of Layer-Based
Latent CoT Interpretation

Proof of Turing completeness
in model architectures

RNN encoder-decoder [17], Transformers [104], Turing Completeness [78] [81]

Towards Infinite-depth
Reasoning (§5)

Spatial Infinite Reasoning:
Text Diffusion Models

Masked Diffusion Models
D3PM [1], SEDD [66], RADD [76], MD4 [93], Simple-MDM [83], MDM [74],
MMaDA [119], IRED [26], LLaDA [75], dKV-Cache [67], DoT-SEDD [124],
dLLM-Cache [65], d1-LLaDA [138], MGDM [125], LLaDA 1.5 [139], DCoLT [48]

Embedding-based Diffusion
Models

Diffusion-LM [61], CDCD [24], Bit Diffusion [15], Plaid [40], BFN [38], DoT-Plaid [124],
TESS [68], TESS 2 [102]

Hybrid AR-Diffusion Models DiffuLLaMA [36], Dream [126], L2D [12], Gemini Diffusion [33], Mercury [55]

’Infinitely Long’
Optimizer Network

Infini-attention Transformers with infini-attention [72]

Test-time training (TTT)
and its descendants

TTT [100], Titans [3], OmegaNet and Atlas [4]

Implicit Fixed-Point RNNs Implicit language models are rnns [87]

Figure 2. Taxonomy of Latent Reasoning.

Finally, we explore advanced paradigms at the frontier of LLM cognition, focusing on
the pursuit of infinite-depth reasoning. This concept refers to a model’s ability to devote
unbounded computational steps to refine a solution, moving beyond fixed-depth architectures.
Our discussion centers on spatial infinite reasoning as realized by text diffusion models [74, 124].
Unlike traditional autoregressive generation, these models operate on the entire output sequence
in parallel, enabling global planning and iterative self- correction through bidirectional context.
This approach facilitates globally consistent and reversible reasoning processes, offering a
promising path toward more powerful and flexible AI systems.

2. Preliminary: Latent Chain-of-Thought

In this section, we present a unified mathematical framework for understanding various Latent
CoT approaches. Unlike traditional CoT reasoning that generates explicit textual intermediate
steps, latent CoT methods perform reasoning through continuous representations and hidden
states within the model’s computational graph. We categorize these approaches based on
how they propagate information across layers (spatial dimension) and time steps (temporal
dimension).
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2.1. General Framework

We begin by establishing a general formulation for transformer-based reasoning systems. Con-
sider a transformer model processing information at time step 𝑡 and layer 𝑙. Let 𝑥 𝑙𝑡 ∈ R𝑑 denote
the activation at layer 𝑙 and time 𝑡. We introduce S𝑙

𝑡 to represent the hidden state that captures
historical information. The structure and dimensionality of S𝑙

𝑡 are architecture-dependent and
define how context is maintained. This state can manifest in several forms, including:

• KV Cache: In standard Transformers, S𝑙
𝑡 is the Key-Value (KV) cache, comprising a pair of

matrices (K𝑙
𝑡, V𝑙

𝑡), where K𝑙, V𝑙 ∈ R𝑛×𝑑 and 𝑛 is the sequence length of the context. Note
that as 𝑡 increases, so does 𝑛.

• Linear Attention State: In models with linear attention, the hidden state can be compressed
into a fixed-size state matrix, S𝑙

𝑡 ∈ R𝑑×𝑑 , which allows for efficient, recurrent-style updates.
• Recurrent State: For RNN-like mechanisms, S𝑙

𝑡 is a single state vector, S𝑙
𝑡 ∈ R𝑑 , that

summarizes all past information into a fixed-size representation.

With this generalized view, the fundamental operations in latent reasoning can be decom-
posed into spatial and temporal transformations.

The spatial transformation propagates information vertically through layers at a fixed time
step:

𝒙𝑙+1
𝑡+1 = 𝑓 (𝒙𝑙𝑡+1, 𝑔(S𝑙

𝑡, 𝒙
𝑙
𝑡)) (1)

where 𝑓 represents the layer-wise transformation function (e.g., a transformer block), which
uses the historical context in S𝑙

𝑡 to compute the next layer’s activation; 𝑔 captures how historical
information is maintained and updated. The implementation of 𝑔 depends on the form of S𝑙

𝑡

(e.g., appending to the KV cache, or performing a matrix/vector update).

Activation-Based Methods Activation-based methods focus on deepening the computational
graph by iteratively refining activations within a single time step. These approaches implement
a form of recursive computation where the same transformation is applied multiple times,
allowing for progressive refinement of representations.

Formally, activation-based methods compute:

𝒙𝑙+𝑛𝑡 = 𝑓
(
. . . 𝑓

(
𝑓 (𝒙𝑙𝑡, 𝑔(S𝑙

𝑡, 𝒙
𝑙
𝑡)), 𝑔(S𝑙+1

𝑡 , 𝒙𝑙+1
𝑡 )

)
, . . . , 𝑔(S𝑙+𝑛−1

𝑡 , 𝒙𝑙+𝑛−1
𝑡 )

)
(2)

This recursive application can be understood as creating a computational loop within the
forward pass. At each iteration 𝑖 ∈ {1, . . . , 𝑛}, the model refines its representation by applying
the transformation function 𝑓 , potentially with access to different hidden states S𝑙+𝑖−1

𝑡 . Here,
𝑙 denotes the starting layer index, constrained by 1 ≤ 𝑙 ≤ 𝐿 − 𝑛, where 𝐿 is the total number
of layers in the model. The key insight is that by repeatedly processing the same input with
shared parameters, the model can perform iterative refinement analogous to human step-by-step
reasoning.

Hidden State-Based Methods Hidden state-based methods take a fundamentally different
approach by aggregating information from multiple temporal or spatial contexts simultaneously.
Rather than iterative refinement, these methods leverage rich historical representations to inform
current computations.
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The core computation in hidden state-based methods is:

𝒙𝑙+1
𝑡 = 𝑓

(
𝒙𝑙𝑡, 𝑔

((
S𝑙
𝑡, S𝑙

𝑡−1, . . . , S𝑙
𝑡−𝑛

)
, 𝒙𝑙𝑡

))
, (3)

This operation allows the model to access a broader context of hidden states, effectively
creating a memory bank that spans multiple layers or time steps. The function 𝑓 must be
designed to effectively aggregate and utilize this expanded context, often through specialized
attention mechanisms or learnable aggregation functions.

2.2. Connections to Explicit Chain-of-Thought

Understanding how these latent methods relate to explicit Chain-of-Thought reasoning provides
important insights. Traditional CoT generates a sequence of tokens 𝑦1, 𝑦2, . . . , 𝑦𝑇 representing
intermediate reasoning steps. In the latent framework, these explicit tokens are replaced by
continuous representations that evolve according to the dynamics described above.

The correspondence can be formalized by considering the generation process. In explicit
CoT:

𝒚𝑡+1 = Decode(Transform(𝒙𝑡, S𝑡)), (4)

where the decoding step projects continuous representations back to discrete tokens.

Latent methods eliminate this decoding step, instead maintaining reasoning in the continu-
ous space:

𝒛𝑡+1 = Transform(𝒛𝑡, S𝑡), (5)

where 𝑧𝑡 represents the continuous "thought" at step 𝑡.

This fundamental difference enables latent methods to explore reasoning pathways that
may not have natural linguistic expressions, potentially discovering more efficient or power-
ful reasoning strategies unconstrained by the token vocabulary. However, it also introduces
challenges in interpretability and training, as the intermediate states no longer correspond to
human-readable explanations.

2.3. Latent Reasoning Updates of Diffusion Models

Understanding how latent update methods relate to diffusion models reveals fundamental
differences from autoregressive (AR) generation. Traditional diffusion models operate purely
through temporal updates without explicit spatial transformations, fundamentally differing
from the spatial-temporal decomposition in transformer-based reasoning systems.

Temporal-Only Updates Diffusion Models Classical diffusion models perform updates exclu-
sively in the temporal dimension through iterative denoising. The process involves two primary
update mechanisms:

Discrete updates (mask-based): Given a sequence of tokens 𝑦1, . . . , 𝑦𝑁 , the model selectively
updates positions based on masking patterns:

𝒙𝑙𝑡+1(𝑖) =
{
𝑓 (𝒙𝑙𝑡 (𝑖), 𝜖𝑡), if 𝑚𝑡 (𝑖) = 1
𝒙𝑙𝑡 (𝑖), otherwise

(6)

where 𝑚𝑡 (𝑖) represents the mask indicating which tokens to update at step 𝑡.

6



Continuous updates (noise-based): The model applies global noise reduction across all
positions:

𝒙𝑙𝑡+1 = 𝑓 (𝒙𝑙𝑡, 𝜖𝑡) (7)

where 𝑓 represents the denoising function that operates uniformly across all token positions.

KV-cache Integrated Diffusion Models Recent advances have begun incorporating bidirec-
tional KV cache mechanisms [67] into diffusion models, introducing spatial-like transformations
alongside temporal updates. This hybrid approach bridges the gap between traditional diffusion
and transformer-based reasoning.

Confidence-thresholded spatial transformation: All token activations are updated layer-
wise at each denoising iteration:

𝒙𝑙+1
𝑡 = 𝑓𝜏

(
𝒙𝑙𝑡, S𝑡𝑙, 𝜖𝑡

)
(8)

where 𝑓𝜏 denotes a bidirectional Transformer block that refines every token representation while
utilizing cached states.

Selective temporal cache updates: Only tokens whose confidence score 𝑐𝑙𝑡 (𝑖) = conf
(
𝑥 𝑙𝑡 (𝑖)

)
meets or exceeds threshold 𝜏 refresh their KV cache:

S𝑙
𝑡+1(𝑖) =

{
𝑔𝜏
(
𝑥 𝑙𝑡 (𝑖), S𝑙

𝑡 (𝑖)
)
, 𝑐𝑙𝑡 (𝑖) ≥ 𝜏

S𝑙
𝑡 (𝑖), otherwise

(9)

Complete spatio-temporal evolution: The framework combines spatial refinement with
selective temporal caching:

𝒙 𝑙+1
𝑡+1 = 𝑓𝜏

(
𝒙𝑙𝑡+1, S𝑙

𝑡+1
)

(10)

This evolution represents a significant departure from traditional diffusion models, incorpo-
rating transformer-style spatial processing while maintaining the iterative refinement benefits of
temporal diffusion. The confidence-thresholded mechanism enables efficient cache management
in bidirectional contexts, addressing the fundamental incompatibility between traditional KV
caching and diffusion model architectures.

Consequently, diffusion models scan the entire sequence to identify and update the highest-
confidence tokens in parallel—continuously correcting their representations across layers—
whereas autoregressive models must commit to a single next token and cannot revisit or refine
earlier outputs. As a result, diffusion’s spatio–temporal mechanism enables ongoing, bidi-
rectional refinement of multiple reliable latent states, while AR generation proceeds strictly
forward, leaving past tokens fixed once generated.

3. Latent Reasoning

The development of latent CoT reasoning follows two fundamental computational paradigms:
expanding depth through activation recurrence and expanding temporal capacity through
hidden state evolution. As illustrated in Figure 3, activation-based methods create deeper
computational graphs by iteratively processing information through the same set of layers, akin
to vertical expansion. In contrast, hidden-state-based methods expand the model’s memory
horizontally, allowing it to access and integrate information over longer sequences.

This distinction raises critical implementation and theoretical questions. For activation-based
approaches, how can a model with a fixed number of layers be architecturally designed or

7
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Figure 3. Comparison of Activation-Based and Hidden-state-Based Latent Reasoning.
Activation-based methods (left) iteratively refine representations by looping through the same
layers over multiple time steps (𝑇 = 1, 2, ..., 𝑁), increasing computational depth. Hidden-state-
based methods (right) process information sequentially, evolving a hidden state that carries
information across a potentially long temporal sequence (𝑇 = 1, 2, ..., 𝑁).

trained to "think" longer about a problem, effectively creating vertical computational depth
on the fly? What are the principles that govern this induced recurrence, and what new
capabilities does it unlock? Conversely, for hidden-state methods, as reasoning chains extend,
how can a model maintain a coherent "state of mind" over vast temporal sequences without
succumbing to the bottleneck of ever-expanding memory? Can this temporal evolution be
reframed as a form of continuous online optimization, conceptually unifying this horizontal
expansion with the iterative vertical refinement seen in activation-based methods?

While both approaches enhance reasoning capabilities, they differ in implementation re-
quirements and deployment flexibility, offering distinct pathways toward more powerful latent
reasoning. The following sections of this paper will describe these parts in detail.

3.1. Vertical Recurrent: Activation-based Methods

Activation-based approaches achieve latent reasoning by creating recurrent computational
flows, either through architectural design or training-time manipulation. These methods share a
common principle: iteratively refining representations without generating explicit reasoning
tokens.

3.1.1. Loop/Universal Transformer Recurrence

Loop-based architectures represent the foundational approach to activation-based latent CoT
reasoning, implementing continuous activation propagation across Transformer layers through
explicit architectural modifications. These models share a core principle: enabling iterative
refinement of hidden states within a single forward pass through layer-wise recurrence. Starting
from the Universal Transformer (UT) [22], which pioneered dynamic recurrence over layers with
its Adaptive Computation Time (ACT) mechanism, this architectural paradigm has established
depth-adaptive reasoning as a viable alternative to traditional fixed-depth transformers. The
key innovation lies in treating network depth not as a static hyperparameter but as a dynamic
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Architecture Pre/Loop/Coda Per-iter input 𝑥𝑡 Hidden state 𝑆𝑡 Dynamic stop Depth-emb 𝑑𝑡

Universal Transformer[22] No 𝑥 𝑙−1
𝑡 + 𝑑𝑡 standard unroll ACT,

∑
𝑡 𝑝𝑡 > 𝜏 sinusoidal 𝑑𝑡

CoTFormer[71] No 𝑆𝑙−1
𝑡 , 𝑥 𝑙−1

𝑡 standard unroll MoR router 𝑔𝑖 learnable 𝑑𝑡

Recursive Transformer[2] Optional 𝑥 𝑙−1
𝑡 share/refill ℎ̂ early-exit, max𝑡Δℎ < 𝜀 none

AlgoFormer[29] Yes 𝑥 𝑙−1
𝑡 standard roll fixed none

Recurrent-Depth[31] Yes 𝑥1
𝑡 , 𝑥 𝑙−1

𝑡 modulo (𝑡 mod 𝑟) reuse fixed-point iteration tried, dropped

Table 1. Comparison of activation-based latent CoT architectures and their key design charac-
teristics, showing the evolution from early monolithic designs to structured Pre/Loop/Coda
frameworks with simplified dynamic stopping mechanisms.

Prelude Loop blocks Coda+

Input tokens

𝑑𝑡

Output

𝑆1
𝑡 , 𝑆2

𝑡 , ..., 𝑆𝑙𝑡 KV-cache

𝜎

stop

𝑙 = 1, 2, . . . , 𝑁
iterations

Legend:
𝑆𝑡: hidden state / KV
𝑑𝑡: depth embedding
𝜎: dynamic stop gate

Figure 4. Conceptual diagram of a Pre/Loop/Coda architecture with per-iteration input 𝑥𝑡 , hidden state
𝑆𝑡 (KV-cache), depth embedding 𝑑𝑡, and a dynamic-stop gate.

computational resource that can be allocated based on task complexity. Extending activation-
reuse beyond Universal/Looped Transformers, Zeng et al. [132] introduce a Pondering LM
that performs 𝑘 iterative ‘ponder’ cycles inside every token prediction. Each cycle converts the
model’s softmax into a continuous pondering embedding: a weighted sum of all vocabulary
vectors, which is fed back via a residual path to refine the hidden state.

Since this seminal work, the field has undergone systematic evolution along several key
dimensions, revealing important design principles for latent reasoning architectures (Table 1
and Figure 4).

The Rise of Pre/Loop/Coda Structure Early models like Universal Transformer and CoT-
Former [71] adopted monolithic recurrent designs without explicit stage separation. However,
recent architectures like Recursive Transformer [2], AlgoFormer [29], and Recurrent-Depth [31]
have converged on a three-stage Pre/Loop/Coda structure. This design explicitly separates in-
put encoding (Prelude), iterative reasoning (Loop blocks), and output decoding (Coda), enabling
more modular and interpretable computation flows. The modularization of the architecture
improves interpretability and facilitates the injection of task-specific priors, such as fixed-point
iteration constraints or algorithmic templates, into the reasoning process.

Per-iteration Input and Hidden State Management Input handling strategies vary across
models, reflecting different hypotheses about information flow during recurrence. Universal
Transformer combines previous layer output 𝑥 𝑙−1

𝑡 with depth embedding 𝑑𝑡. CoTFormer uses
both hidden state S𝑙−1

𝑡 and 𝑥 𝑙−1
𝑡 , while Recursive Transformer and AlgoFormer simplify to just

𝑥 𝑙−1
𝑡 . Recurrent-Depth adopts a hybrid approach with both 𝑥1

𝑡 and 𝑥 𝑙−1
𝑡 .

For hidden state management, most models use standard unrolling of KV caches. Notable
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exceptions include Recursive Transformer’s share/refill mechanism and Recurrent-Depth’s
modulo-based reuse (𝑡 mod 𝑟), which improve memory efficiency through periodic cache re-
cycling, as shown in Table 1. These innovations strike a balance between preserving temporal
coherence and managing computational resources.

The Decline of Depth Embeddings Depth embeddings show a clear deprecation trend. Uni-
versal Transformer introduced sinusoidal 𝑑𝑡, and CoTFormer experimented with learnable
embeddings. However, subsequent models like Recursive Transformer and AlgoFormer com-
pletely dropped them. Recurrent-Depth tried but ultimately abandoned depth embeddings,
suggesting their limited utility in recurrent architectures despite initial enthusiasm. This trend
indicates that explicit positional encoding of depth may be redundant when the architecture
inherently encodes iteration count through state evolution.

Simplification of Dynamic Stopping Mechanisms Dynamic stopping mechanisms exhibit
a clear trend toward simplicity. Universal Transformer’s sophisticated ACT mechanism (with
cumulative probability

∑
𝑡 𝑝𝑡 > 𝜏) gave way to CoTFormer’s MoR router 𝑔𝑖. Recent models adopt

even simpler strategies: Recursive Transformer uses early-exit based on change magnitude
(max𝑡 Δℎ < 𝜀), AlgoFormer opts for fixed iterations, and Recurrent-Depth explores fixed-point
criteria. This evolution suggests that complex adaptive mechanisms may not justify their
computational overhead in practice.

These architectural trends reflect the field’s maturing understanding: moving from com-
plex adaptive mechanisms toward stable, modular designs while preserving the core benefit
of enhanced reasoning through layer-wise recurrence. The convergence on simpler, more
interpretable designs suggests that the key to latent reasoning may lie not in sophisticated
control mechanisms but in providing sufficient computational depth with efficient resource
management.

3.1.2. Activation with Explicit Hidden-State Feedback

While loop-based architectures refine token representations by rerunning the same set of layers,
a distinct family of models feeds hidden states back into the input stream between iterations. In these
systems the hidden activations themselves become new sequence elements, so each recurrent
step simultaneously extends the effective depth and exposes internal computation to subsequent
attention.

Coconut Proposed by Hao et al. [44], Coconut inserts a continuous thought vector—the last-
layer hidden state of the previous decoding step—as an extra position before the current
token. Pondering therefore occurs in latent space without emitting textual reasoning, enabling
breadth-first exploration while reusing the same Transformer parameters.

CoTFormer In CoTFormer [71], every forward pass first computes preliminary token em-
beddings; these activations are then interleaved back into the sequence and the shared block
stack is executed again. Early-exited tokens thus attend to deeper refinements of their own
representations, realizing adaptive depth with minimal parameters.

Both models share three properties that distinguish them from “pure” activation-based
recurrence:
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Key characteristics. Explicit state tokens re-inject hidden vectors as sequence elements, bridg-
ing vertical recurrence and horizontal memory; no architectural expansion—the model reuses
the same layers so parameter count stays constant while depth grows dynamically; and latent
reasoning remains internal, thereby avoiding the latency of producing explicit CoT tokens.

These designs demonstrate that passing hidden states across recurrent hops can unlock
stronger reasoning while preserving the efficiency of shared-weight loops, and they foreshadow
later hybrids that blend activation and hidden-state paradigms.

3.1.3. Training-induced Recurrence

While architectural recurrence requires explicit structural modifications, an alternative pathway
achieves similar computational benefits through specialized training on standard transformer
architectures. These methods fundamentally create recurrent activation flows without changing
the model’s underlying structure, demonstrating that the key insight of iterative refinement can
be induced through training alone. This approach is particularly valuable as it enables existing
pretrained models to develop latent reasoning capabilities without architectural constraints.

The core principle unifying these methods is the creation of implicit loops in the computation
graph: whether by feeding activations back into the model (continuous recurrence), compressing
multi-step reasoning into iteratively-processed representations (compressed states), or extending
the effective computation depth through strategic token insertion (expanded iterations). All
these approaches share the goal of enabling deeper reasoning without explicit architectural
loops.

Continuous Activation Recurrence The most direct form of training-induced recurrence
involves creating explicit loops of continuous activations. Ref. [44] pioneers this approach with
Coconut, which loops the LLM’s last hidden state (the "continuous thought") directly back into
the model as input for the next step. This mechanism creates a recurrence pattern strikingly
similar to architectural approaches like Universal Transformer, but implemented entirely through
training. The continuous thought can encode multiple reasoning paths simultaneously, enabling
breadth-first search-like exploration in latent space.

Building on this foundation, subsequent work has refined the training methodology while
maintaining the core recurrence principle. Shen et al. [91] propose CODI, which frames the
problem as learning to align recurrent hidden states through self-distillation. By aligning the
hidden activation before the final answer between teacher (with full CoT) and student (with
compressed reasoning) paths, CODI effectively learns a fixed-point iteration in activation space.
This single-step alignment proves more stable than Coconut’s curriculum learning, achieving
parity with explicit CoT on GSM8K for the first time among latent methods.

Cheng and Van Durme [16] take a different approach with CCOT, training the model to
generate variable-length sequences of continuous embeddings that approximate full reasoning
traces. These embeddings function as compressed representations of recurrent computation
steps, maintaining the iterative nature while reducing sequence length. The optional decoding
back to text preserves interpretability while confirming that meaningful computation occurs in
these latent iterations. PCCOT [116] uses Jacobi-iteration allowing parallel continuous thoughts.
Building on pause- and filler-token methods that prolong hidden-state computation, System-1.5
Reasoning [109] introduces Depth and Step Shortcuts that dynamically allocate vertical layer
depth and horizontal reasoning steps, delivering over 20× faster inference on GSM8K while
preserving chain-of-thought accuracy—all without modifying the Transformer backbone.
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Compressed State Recurrence Rather than continuous loops, another strategy compresses
reasoning steps into discrete or semi-discrete representations that the model processes recur-
rently. Su et al. [98] replace early CoT segments with discrete latent tokens learned via VQ-VAE,
creating "assorted" reasoning that mixes compressed abstract steps with detailed reasoning. This
approach effectively creates a hierarchical recurrence where abstract tokens trigger expanded
computation in subsequent layers.

Zhang et al. [134] employ "gist tokens" as compression anchors in hidden space. Though
these tokens themselves are semantically meaningless, they serve as recurrence checkpoints
where the model aggregates and redistributes computational state. The attention mask manip-
ulation enforces that subsequent reasoning depends on these compressed states, creating an
implicit recurrence structure through the sequence.

The key insight across these compression methods is that they transform horizontal (sequence-
level) reasoning into vertical (depth-level) computation, effectively increasing the recurrence
depth available for each logical step.

Iteration Expansion through Strategic Tokens A third category of training-induced recurrence
works by expanding the number of implicit iterations through token insertion. This approach
recognizes that additional tokens, even without explicit semantic content, can provide more
recurrence steps for internal computation.

Pfau et al. [79] demonstrate that even meaningless filler tokens (e.g., "......") can improve
reasoning by simply providing more attention steps, effectively increasing the number of
recurrent iterations the model can perform. Goyal et al. [37] refine this with learnable ‘<pause>‘
tokens that explicitly signal computation steps, creating trainable recurrence points that the
model learns to utilize effectively.

More sophisticated approaches inject structured tokens that organize the recurrence pattern.
Wang et al. [110] introduce planning tokens that create a hierarchical recurrence structure, where
each planning token initiates a new reasoning loop with specific computational goals. Jin et al.
[50] further decompose reasoning into ‘<memory>‘ and ‘<reason>‘ tokens, creating specialized
recurrence patterns for different types of cognitive operations. These structured approaches
demonstrate that training can induce not just recurrence, but organized, interpretable recurrence
patterns.

Implications and Connections These training-induced methods reveal a fundamental insight:
recurrence for reasoning is not solely an architectural property but can emerge from appropriate
training objectives. The success of these approaches suggests that standard transformers possess
latent capacity for iterative computation that training can unlock. Moreover, the convergence
of continuous, compressed, and token-based methods toward similar performance outcomes
indicates that the specific implementation of recurrence matters less than ensuring sufficient
computational depth for reasoning tasks.

The relationship between these training-induced methods and architectural recurrence is
complementary rather than competitive. Future work might explore hybrid approaches that
combine architectural loops with training-induced recurrence patterns, potentially achieving
the benefits of both explicit structure and learned optimization.
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3.1.4. Training Strategies for Recurrent Reasoning

Effectively training models with recurrent activation flows presents unique challenges, as
these architectures must learn to leverage iterative computation rather than relying solely on
feedforward depth. Researchers have developed specialized training strategies that address
both architectural and induced recurrence.

For architectural recurrence, MIDAS [85] proposes a progressive stacking framework to
address training stability in loop-based models. It defines a replication operator M( 𝑓 , 𝑏) that
duplicates the middle layers of a base model 𝑓 by a factor 𝑏, enabling gradual depth expansion.
Training proceeds through 𝑘 stages where model depth increases progressively, with each deeper
model initialized from the previous stage. This curriculum approach helps models develop
stable iterative reasoning patterns. Complementing this architectural focus, Saunshi et al. [86]
introduce a looping-inspired regularization that enables even standard Transformers to benefit
from recurrence-like properties through a cosine-similarity term R𝐺 (𝑘) in the loss function. This
approach reveals that recurrent behavior can emerge from appropriate training objectives alone.

For training-induced recurrence, Stepwise Internalization [23] pioneered curriculum-based
compression of reasoning traces. This technique gradually removes CoT tokens during fine-
tuning, allowing models to internalize reasoning patterns into their parameters. This curriculum
principle has been widely adopted, notably by Coconut [44] which progressively replaces CoT
tokens with continuous thoughts, achieving fully latent inference loops. RELAY [127] takes a
more direct approach by explicitly aligning recurrence steps with reasoning steps through a
two-stage process: first training looped Transformers with CoT-aligned supervision using loss
L = L𝑎𝑛𝑠 + 𝜆L𝑖𝑡𝑒𝑟, then fine-tuning autoregressive models on the generated reasoning chains.

These diverse training strategies converge on key principles: gradual complexity increase,
alignment between recurrence depth and reasoning steps, and careful balance between architec-
tural constraints and learned behaviors. The success of both architectural and training-induced
approaches suggests that effective recurrent reasoning emerges from the interplay of structure
and optimization.

3.1.5. Applications and Capabilities

The true test of recurrent reasoning methods lies in their ability to tackle complex tasks requiring
structured, multi-step computation. Both architectural and training-induced recurrence have
demonstrated remarkable capabilities across diverse domains.

In algorithmic generalization, recurrent models exhibit unprecedented extrapolation abilities.
Schwarzschild et al. [88] and Giannou et al. [35] demonstrate that looped architectures can gen-
eralize from small problem instances to significantly harder ones by extending recurrence steps
at test time—a property unavailable to static-depth Transformers. This recurrence-controlled
scaling mimics human-like progressive problem-solving and has been formalized through
theoretical frameworks of looped computation graphs. Similarly, training-induced methods
like Coconut show that continuous thought loops can solve logical reasoning tasks (ProsQA,
PrOntoQA) through latent breadth-first search, while compressed-state methods achieve parity
with explicit CoT on mathematical reasoning (GSM8K).

In symbolic reasoning and graph algorithms, recurrent models bridge neural and algorithmic
computation. De Luca and Fountoulakis [21] show that looped Transformers with graph-
specific attention heads can simulate classical algorithms (BFS, DFS, shortest-path) within
bounded memory. This capability extends to training-induced recurrence: models with planning
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tokens [110] demonstrate improved performance on multi-hop reasoning by creating hierarchical
computation structures. The decomposition of reasoning into specialized tokens (<memory>,
<reason>) [50] further enhances performance on tasks requiring both retrieval and logical
inference.

In optimization and meta-learning, works like [13, 30] prove that looped models implicitly
implement multi-step gradient descent, revealing deep connections between recurrence and
optimization. This theoretical insight explains why both architectural loops and training-induced
continuous thoughts converge on similar computational patterns: they are fundamentally
performing iterative refinement analogous to optimization algorithms.

These applications demonstrate that recurrent reasoning—whether achieved through archi-
tecture or training—provides a general framework for complex computation. The convergence
of different approaches on similar capabilities suggests that the key insight is not the specific
implementation but ensuring sufficient iterative depth for the task at hand.

3.2. Horizontal Recurrent: Hidden state-based Methods

As previously mentioned, activation-based approaches focus on expanding layer depth in net-
works. However, deeper networks inevitably encounter challenges such as gradient explosion
or vanishing. In contrast, the temporal dimension can be readily expanded to millions of tokens.
From a theoretical perspective, the temporal dimension can also be conceptualized as a form of
depth, which raises an important research question: How can we effectively expand the latent
reasoning process along the temporal dimension?

The standard Transformer provides a baseline for this horizontal expansion. It handles
temporal information by storing all previous token inputs as key-value pairs in what is known
as the KV cache. This cache effectively serves as the model’s hidden state, preserving a rich
history of the sequence. However, this approach has a critical bottleneck: the KV cache grows
linearly with the sequence length, leading to unbounded memory consumption that makes
processing very long sequences impractical.

To address this challenge, we can compress previous information into a fixed-size vector or
matrix, similar to RNNs. When working with hidden states, there are two primary approaches
to enhance their expressiveness: (1) the Linear-State recurrence approach, which applies update
and decay rules to the hidden states, and (2) Gradient-State recurrence approach, treating
hidden states as online-learning parameters and optimizing them using online learning methods.
Notably, although these methods have not yet produced evidence demonstrating enhanced
reasoning capabilities, their theoretical properties suggest they may play a significant role
in the future, as they represent a form of iterative processing that is conceptually similar to
layer stacking.

3.2.1. Linear-State Recurrence

For the first approach, models such as Mamba-2 [20], GLA [121], RWKV-6 [77], and HGRN2 [80]
represent early attempts in this direction. A matrix-valued hidden state 𝑆 is transmitted and
updated along the temporal dimension. At each time step, the hidden state undergoes global
decay, followed by updates incorporating information from the current time step.

Remarkably, these diverse linear attention models can be unified under a general framework
of associative recurrent neural networks with matrix-valued hidden states [122, 123]. Given a
matrix-valued hidden state S𝑡 ∈ R𝑑×𝑛 and current input x𝑡 ∈ R𝑑 , these models follow the general
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form:

S𝑡 = S𝑡−1 + 𝒌𝒕𝒗
⊤
𝒕 , (recurrence) (11)

o𝑡 = S𝑡𝒒𝑡, (memory read-out) (12)

where • represents an associative operator (e.g., Hadamard product, matrix multiplication),
and M𝑡, 𝒗𝑡, 𝒌𝑡, 𝒒𝑡 are functions of the current input 𝒙𝑡. The use of associative operators enables
parallel scan calculations of S1, . . . , S𝐿, facilitating efficient training. Table 2 illustrates how
various models instantiate this framework.

However, a more profound perspective emerges when interpreting this state evolution
through the lens of online optimization gradient. A key insight comes from DeltaNet [123],
which perfectly exemplifies this duality. While its state update rule has a closed-form alge-
braic expression (see Table 2 linear recurrent attention part), it is mathematically equivalent to
applying a single gradient descent step to an online regression objective L(𝑺) = 1

2 ∥𝑺𝒌𝑡 − 𝒗𝑡∥2
2.

This gradient-state recurrence view is conceptually transformative. It reframes the temporal
evolution of the hidden state 𝑺𝑡 as a form of iterative refinement, akin to training a neural
network layer. In this sense, the state matrix 𝑺 is effectively treated as a dynamic, "fast weight"
layer that is updated at each step based on a local objective. This perspective conceptually unifies
the "temporal" recurrence of hidden-state models with the "depth" recurrence of activation-based
models, suggesting a shared underlying principle of iterative processing for latent reasoning.

3.2.2. Gradient-State Recurrence

While linear-state models rely on predetermined decay–add rules, gradient-state methods treat
the hidden matrix as a set of fast-adapting parameters updated by a learnable optimizer. Each
token triggers a lightweight descent step that steers the state toward the current key–value
target, allowing the model to internalize task-specific dynamics on the fly. This view shifts
the design space from choosing fixed linear kernels to selecting optimization algorithms (SGD,
Adam-like, second-order, etc.), opening a rich continuum of memory behaviors governed by
learning-rate schedules, momentum terms and higher-order corrections.

This insight paved the way for a second research trajectory that abandons closed-form
descriptions entirely, in favor of direct online learning formulations [3–5, 52, 100]. This line of
work, progressing from TTT (implementing SGD-like dynamics) [100] to Titans (incorporating
Adam-like behaviors) [3] and ATLAS (utilizing Muon optimization principles) [4], formulates
the state update explicitly as a gradient-based optimization step. Extending this optimization
perspective, Ref. [58] introduce LATENTSEEK, a framework that performs test-time instance-
level adaptation by directly optimizing latent representations using policy gradient.Despite
their different origins, these approaches converge conceptually and can be understood through
the general update rule:

S𝑡 = 𝛼𝑡S𝑡−1 − 𝜂𝑡∇𝑺ℓ(𝑺𝑡−1; 𝒌𝑡, 𝒗𝑡) (13)

While powerful, this approach introduces significant challenges for parallelization. Unlike
linear recurrent models that can be parallelized efficiently with a single scan operation, the
gradient ∇ℓ at step 𝑡 depends on the previous state 𝑺𝑡−1. This inherent sequential dependency
prevents parallel computation across the entire sequence length. Furthermore, these recurrent
updates are embedded within complex architectural blocks that include standard components
like LayerNorm and residual connections, making it difficult to fuse the computation into a
single, hardware-efficient kernel.
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Method Unified Memory-update Rule

Linear-State Recurrence
Linear Attn [53] 𝑺𝑡 = 𝑺𝑡−1 + 𝒌𝑡𝒗⊤𝑡
RetNet/Lightning [101] 𝑺𝑡 = 𝛾𝑺𝑡−1 + 𝒌𝑡𝒗⊤𝑡
GLA [121] 𝑺𝑡 = 𝑺𝑡−1Diag(𝒂𝑡) + 𝒌𝑡𝒗⊤𝑡
Mamba-2 [20] 𝑺𝑡 = 𝛼𝑡 𝑺𝑡−1 + 𝑏𝑡 𝒌𝑡𝒗⊤𝑡
HGRN-2 [80] 𝑺𝑡 = 𝑺𝑡−1Diag(𝒂𝑡) + (1 − 𝒂𝑡)𝒗⊤𝑡
Linear/Gradient-State duality
DeltaNet [123] State-update: 𝑺𝑡 = 𝑺𝑡−1 (𝐼 − 𝛽𝑡𝒌𝑡𝒌

⊤
𝑡 ) + 𝛽𝑡𝒌𝑡𝒗

⊤
𝑡

Optimization: 𝑺𝑡 = 𝑺𝑡−1 − 𝛽𝑡∇𝑺 1
2 ∥𝑺𝒌𝑡 − 𝒗𝑡 ∥2

2
G-DeltaNet [122] State-update: 𝑺𝑡 = 𝛼𝑡𝑺𝑡−1 (𝐼 − 𝛽𝑡𝒌𝑡𝒌

⊤
𝑡 ) + 𝛽𝑡𝒌𝑡𝒗

⊤
𝑡

Optimization: 𝑺𝑡 = 𝑺𝑡−1 − 𝛽𝑡∇𝑺 1
2 ∥𝑺𝒌𝑡 − 𝒗𝑡 ∥2

2 + 𝜆∥𝑺 − 𝛼𝑡𝑺𝑡−1∥2
𝐹

Gradient-State Recurrence
TTT [100] 𝑺𝑡 = 𝑺𝑡−1 − 𝜂𝑡 ∇𝑺ℓ(𝑺𝑡−1; 𝒌𝑡, 𝒗𝑡)
Titans [3]* 𝑺𝑡 = 𝛼𝑡 𝑺𝑡−1 − 𝜂𝑡 ∇𝑺ℓ(𝑺𝑡−1; 𝒌𝑡, 𝒗𝑡)
Lattice (orth.) [52] 𝑺𝑖,𝑡 = 𝑺𝑖,𝑡−1 + 𝛼𝑖,𝑡

(
𝐼 −

𝑺𝑖,𝑡−1𝑺
⊤
𝑖,𝑡−1

∥𝑺𝑖,𝑡−1 ∥2

)
𝒉𝑡

Moneta [5] 𝑺𝑡 = Norm𝑞

(
𝛼𝑡𝑺𝑡−1 − 𝜂𝑡∇𝑺ℓ𝑝 (𝑺𝑡−1; 𝒌𝑡, 𝒗𝑡)

)
Yaad (Huber) [5] 𝑺𝑡 = 𝑎𝑡𝑺𝑡−1 − 𝜂𝑡

{
∇𝑺ℓ2, ∥𝑆(𝒌𝑡) − 𝒗𝑡 ∥ ≤ 𝛿𝑡

𝛿𝑡 ∇𝑺ℓ1, otherwise
Memora [5] 𝑺𝑡 = Softmax

(
𝛼𝑡 log 𝑺𝑡−1 − 𝜂𝑡∇𝑺ℓ2 (𝑺𝑡−1; 𝒌𝑡, 𝒗𝑡)

)
OmegaNet [4] 𝑺𝑡 = 𝛼𝑡𝑺𝑡−1 −

𝑡∑︁
𝑖=𝑡−𝑐+1

𝛾𝑖∇𝑺


𝑺𝑡−1𝜙(𝒌𝑖) − 𝒗𝑖



2
2

Atlas [4]
𝑺aux
𝑡 = 𝜃𝑡𝑺

aux
𝑡−1 −

𝑡∑︁
𝑖=𝑡−𝑐+1

𝜂𝑖∇𝑺


𝑺𝑡−1𝜙(𝒌𝑖) − 𝒗𝑖



2
2

𝑺𝑡 = 𝛼𝑡𝑺𝑡−1 + NS5(𝑺aux
𝑡 )

* Titans omits momentum and norm-adaptation terms for brevity.

Table 2. Unified hidden-state and optimization-based memory updates. Each
model is a recurrence on matrix memory 𝑺𝑡: apply decay, projection or an opti-
mization step to 𝑺𝑡−1, then add an outer-product or gradient correction (read-out:
𝒐𝑡 = 𝑺𝑡𝒒𝑡). Symbols: For uniformity, 𝛼𝑡 generally denotes the gate controlling the
retention of the previous state, while 𝜂𝑡 denotes the learning rate. An impor-
tant exception is DeltaNet and Gated-DeltaNet, whose learning rate or writing
strength is denoted by 𝛽𝑡. Additionally, 𝛾𝑖 is the weight for each token’s gradient
in the OmegaNet context window, and 𝜃𝑡 is the momentum decay term in Atlas.
All these parameters are data-/channel-dependent scalars, typically in (0, 1).
𝛿𝑡 is the Huber threshold; ∇ℓ𝑝,∇ℓ1,∇ℓ2 are gradients w.r.t. (𝒌𝑡, 𝒗𝑡); Norm𝑞(·) is
𝑞-norm normalization (Moneta); 𝜙(·) denotes a polynomial/high-order feature
map; NS5(·) is the Muon/Newton–Schulz 2nd-order update (Atlas); 𝐼 − 𝒔𝒔⊤

∥𝒔∥2 is
the orthogonal projector in Lattice.
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To overcome these limitations, a practical solution known as chunk-wise parallelization has
been widely adopted [3, 100, 122]. This strategy balances expressiveness and efficiency:

• Intra-chunk Parallelism: Within a small, fixed-size block (chunk) of the sequence, the
gradients for all tokens are computed in parallel with respect to the same initial state (the
final state of the previous chunk). This breaks the sequential dependency within the chunk,
allowing for efficient, batched computation.

• Inter-chunk Recurrence: The overall sequential nature of the model is maintained between
chunks. The final state of one chunk is passed recurrently to become the initial state for
the next, forming a chain at the chunk level.

Extending the optimization perspective beyond internal state updates, Zhu et al. [140] introduce
Soft Reasoning, which treats the first-token embedding as a controllable latent variable. By
injecting Gaussian noise and maximizing an Expected-Improvement objective via Bayesian
optimization, the method dynamically searches the hidden space for a reasoning trajectory.

Although current research has not yet produced evidence demonstrating enhanced reasoning
capabilities in these models, their theoretical properties suggest significant potential, particularly
for enabling self-iteration in the absence of input tokens.

3.2.3. Training-induced Hidden-State Conversion

Building on the success of training-induced recurrence for activation-based models, a parallel line
of work shows that fixed-architecture Transformers can be converted, rather than redesigned
into hidden-state (RNN/SSM) models through targeted fine-tuning or distillation. These
methods preserve most of the teacher’s parameters while replacing quadratic self-attention with
sub-quadratic mixers that maintain a single recurrent state, thereby inheriting constant-memory
inference.

Cross-architecture distillation. Earlier “Transformer-to-RNN” (T2R) conversions replaced
softmax with trainable linear kernels but required heavy retraining. SUPRA [69] refines this idea:
starting from strong Llama-2/Mistral checkpoints, it swaps attention for GroupNorm-stabilized
linear kernels and fine-tunes on ∼20 B tokens, reaching competitive accuracy with only 5% of
the cost of pretraining a recurrent model from scratch. MOHAWK [7] introduces a three-phase
procedure (matrix–orientation hidden-state alignment knowledge distillation) that transfers
a pretrained Transformer into a Mamba-2 state-space model using only 3B tokens, yielding
“Phi-Mamba” which outperforms all prior open recurrent LMs of similar size. The same recipe
scales to 1–8 B models in Llamba [8], demonstrating that recurrent students can match Llama-3
teachers with 0.1% of original training compute while enabling larger batch sizes and higher.

Low-rank linearization. LoLCATs [135] shows that high-fidelity conversion does not need
full-model updates. It first matches every attention head with a sliding-window linear mixer
(attention transfer), then restores any residual loss with LoRA adapters touching just 0.2% of
weights. This two-step "low-rank linearization" narrows the MMLU gap to ≤1% for 8 B models
and scales to 70–405 B parameters within a single day of training.

Gated conversions. Liger [56] repurposes the pretrained key matrix to build per-channel forget
gates, yielding a gated recurrent student that recovers 93% of teacher performance with only
0.02% of the original token budget and no extra parameters beyond LoRA.
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4. Mechanistic Interpretability

This section demonstrates the feasibility of Latent CoT and justifies the use of layers as indicators
to facilitate the implementation of Latent CoT. As previously discussed, the majority of latent
reasoning behaviors in large language models emerge through operations across layers, both
in temporal and spatial dimensions. This raises a fundamental question: Are layers the basic
computational units of reasoning?

Mechanistic Interpretability providing tools like Probing and Circuit Analysis, enables us
to shift from observing model behavior in reasoning to understanding its mechanism. This is
crucial to unveil the role of Transformer’s layers in reasoning. In this section, we first summarize
existing work from an interpretability perspective to address whether layer stacking represents
a form of Latent CoT. Next, we analyze how layers function as a latent CoT by examining
aspects such as layer specialization and inter-layer information flow. Finally, we illustrate the
limitations of expressing CoT using layer representations.

4.1. Do Layer Stacks Reflect Latent CoT?

The concept of Chain of Thought (CoT) reasoning allows models to generate sequential thought
tokens, giving them more time and computational resources before arriving at an answer. This
idea has been influential in shaping new paradigms for scaling inference in “thinking” models,
such as OpenAI o1 [49] and DeepSeek’s R1 [41]. In parallel, there’s growing evidence suggesting
that the stacking of layers in neural networks similarly impacts reasoning capabilities, indicating
a “layer-based hidden CoT.” This relationship between layer depth and latent reasoning is
critical for understanding the model’s potential reasoning ability.

At a macro level, a series of studies have found a close correlation between layer depth
and the reasoning capabilities of the model. Yu [128] found that the model’s Implicit CoT
capabilities are strictly limited by the number of network layers. For a 5-step reasoning task,
although intermediate results emerge within some layers, the final reasoning outcome fails
to emerge due to an insufficient number of layers. Guo et al. [42] discovered that at least 2-3
layers are required to form a complete two-step reasoning chain within the model. Insufficient
layers or inadequate depth in subsequent layers will hinder the ability to perform multi-hop
reasoning. In addition, some studies have explored the structural advantages brought by layer
depth from the perspective of representational capacity. Saunshi et al. [86] formally establish
that any K-layer transformer performing m-step CoT reasoning can be simulated by an (L+O(1))
layer transformer through m iterative forward passes. Merrill and Sabharwal [70] demonstrate
that increasing Transformer depth significantly enhances reasoning abilities, enabling complex
tasks like language recognition and graph connectivity that fixed depths cannot achieve. This
theorem fundamentally establishes that layer depth serves as the primary bottleneck for latent
reasoning capacity, where the achievable CoT step length scales linearly with layer count.

At a micro level, studies commonly reveal a clear correspondence between specific layers
and tasks within CoT reasoning. Just like the various steps in CoT, different layers play distinct
roles in the reasoning process, while the overall reasoning depth (layer count) influences the final
reasoning performance. A series of interpretability studies have revealed significant functional
differentiation across layers of varying depths in reasoning tasks [11, 46]. Layer depth affects the
completeness of reasoning chains [42], which expand in parallel and grow exponentially [114],
with intermediate information being integrated and transmitted across depths [129]. These
observations at the micro-level strongly suggest a structured functional differentiation across
layers, each performing distinct computational roles analogous to steps in an explicit CoT. To
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better understand how this latent chain emerges from layer stacks, it is necessary to delve deeper
into the specific mechanisms of layer specialization and inter-layer information flow.

4.2. Mechanisms of Latent CoT in Layer Representation

Following the evidence from the micro-level analysis, we formalize the theory of Layer Spe-
cialization as a foundational framework for interpreting Latent CoT. This perspective posits
that individual layers within Transformer models systematically specialize to support distinct
reasoning operations, collectively forming an implicit computational pipeline analogous to an
explicit CoT. Next, we articulate the role each layer group (shallow, intermediate, and deep)
plays in supporting this latent reasoning structure, followed by a discussion of how information
is propagated across these specialized layers.

Theory of Layer Specilization The Transformer model consists of alternating self-attention
and feed-forward network (FFN) modules. A natural assumption is that different layers play
distinct roles in reasoning tasks [39, 92, 137]. A series of interpretability studies are focusing on
uncovering how these layers work together to build and convey the underlying CoT processes.
From shallow to deep layers, the model exhibits a clear “division of labor.” The reasoning
process transitions from specific, local, and syntactic information in the shallow layers to rich
semantic integration and the merging of reasoning paths in the intermediate and deep layers.
This differentiated structure leads us to consider each layer as the smallest functional unit in the
reasoning process.

Shallow Layers: Basic representational processor of Latent CoT. Transformer’s shallow
layers perform initial text processing, laying the groundwork for higher-level semantic analysis
and reasoning. Functionally, the shallow layers primarily process local information, syntactic
structures [54], and surface patterns [34], perform initial data transformations [14], and form
early circuit primitives [60, 105, 107]. Additionally, studies indicate that shallow layers are
responsible for storing and recalling factual knowledge [96, 120] and bridging entity parsing in
multi-hop reasoning tasks [9, 89, 120]. In summary, shallow layers are crucial for processing fun-
damental information and factual knowledge, with their ability to establish bridging variables
directly influencing the model’s reasoning performance.

Intermediate Layers: Core of Latent CoT. Intermediate layers play a pivotal role in complex,
multi-step reasoning tasks for the following reasons: (1) Intermediate layers form specialized
sub-circuits dedicated to reasoning functions, (2) Intermediate layers exhibit superior repre-
sentational capabilities, and (3) Activations in intermediate layers have a decisive impact on
reasoning outcomes.

Intermediate layers contain specific, identifiable computational sub-circuits specialized for
distinct reasoning sub-tasks. These circuits typically involve coordinated interactions between
attention heads and MLP modules. Wang et al. [108] reverse-engineer the internal algorithm
by which GPT-2 identifies indirect objects in sentences. They identify a mid-layer attention
sub-circuit responsible for entity tracking and pronoun resolution, showing that intermediate
layers carry out essential structured reasoning. Similarly, a series of studies have identified
potential reasoning circuits within the intermediate layers [43, 95, 108, 117]. The formation of
these circuits is emergent, representing efficient computational patterns spontaneously learned
by the model from large-scale data [6, 103].

Intermediate layers exhibit unique characteristics in representation, not only demonstrat-
ing powerful expressive capabilities but also playing a crucial role in knowledge storage and
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encoding. The performance of intermediate layer embeddings can exceed that of final layer
embeddings by up to 16% in text embedding tasks, and show consistency across different model
architectures and scales [96]. Some researchers believe that this powerful representation capabil-
ity stems from the objective function used during pretraining. The autoregressive paradigm
induces an information bottleneck at intermediate depths of the model, forcing it to distill the
most essential and salient information [57, 108].

Intermediate layers have a causal influence on final reasoning outcomes. Correct activation
of these layers is necessary for the model to produce valid inferences. A series of studies
identify specialized neurons in intermediate layers and perform causal interventions. They find
that enhancing activations significantly improves reasoning performance, while suppressing
activations leads to a decline in reasoning ability [31, 111]. Intermediate layer representations,
acting as bridging entities, also play a causally critical role in multi-step reasoning outcomes [120].
The functional specialization of intermediate layers makes their correct activation critically
decisive for the final reasoning outcomes. For example, Ref. [62] traced failures in multi-hop
reasoning to specific Attention modules in the intermediate layers that improperly handled
implicit reasoning steps. By successfully "patching" these modules to correct the reasoning, they
provided strong causal evidence for the functional specialization of these intermediate layer
circuits.

Deep Layers: Output Refinement and Decision-making of Latent CoT. The deep layers of
Transformer models lie at the end of the information processing flow, play a pivotal role in output
optimization and decision-making. Deep layers receive rich representational information from
intermediate layers and perform semantic transformation tailored to specific downstream tasks
[57, 96], performing more complex logical integration and determine the final answer [27, 43].

However, several layer pruning studies indicate that deeper layers exhibit characteristics
such as poor training performance, limited functionality, and reduced representation learning
capabilities [19, 90, 130]. Existing research attributes this degradation to variance issues in
Pre-Layer Normalization and the frequent degeneration of attention matrices. Sun et al. [99]
suggest that the exponential growth of output variance in Pre-LN and derivatives approaching
the identity matrix in deeper layers are the main causes of layer degradation. Sanyal et al. [84]
found that attention matrices in deeper layers frequently degenerate, often collapsing into nearly
rank-one single-column patterns. We believe that maintaining the “effectiveness” of each layer
during pre-training is crucial. Enhancing the functionality of layers, especially deep layers, is a
future direction to improve the model’s reasoning abilities.

Theory of Information Flow Given the layer specialization, the flow of information across
these layers is crucial for reasoning process. Stolfo et al. [97] quantify the indirect contributions
of MLP and attention modules to clarify internal information flow pathways in LLM during
arithmetic tasks. The results highlight the crucial role of the attention mechanism in inter-layer
information flow during reasoning, which transmits computational information from early
processing layers to the final token. Wang et al. [106] discover a “generalizing circuit” emerging
during the grokking process. This circuit enables cross-layer information flow, with lower
layers extracting bridge entities and higher layers conducting reasoning. Yu et al. [129] present a
neuron-level investigation into the logits flow of LLMs during multi-hop knowledge prediction.
With "back attention" mechanism, hidden information can be effectively transmitted from higher
layers to lower layers, enhancing model’s reasoning ability. Further research substantiates this
by analyzing the "embedding trajectory" across all model layers. One study [113], which terms
this the "Chain-of-Embedding," shows that the trajectory’s geometric shape can distinguish
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correct from incorrect answers, enabling output-free self-evaluation. Another study [112] uses
trajectory "volatility" to detect out-of-distribution mathematical problems, finding that models
show an "Early Stabilization" in their reasoning path for familiar tasks but not for unfamiliar
ones. Both studies confirm that the vertical, layer-by-layer processing of LLMs contains a rich,
interpretable information flow analogous to a latent chain of thought.

4.3. Turing Completeness of Layer-Based Latent CoT

Turing completeness is a fundamental concept in theoretical computer science. It describes
the ability of a system to perform any computation that can be performed by a universal
Turing machine. A computational system is considered Turing complete if it can simulate
the computational process of any Turing machine. In this section, we first attempt to answer
whether the Vanilla Transformer is Turing complete. Next, we summarize what modifications
are needed to make the Transformer achieve Turing completeness.

Proof of Turing completeness in model architectures Before the emergence of Transformers
[104], Recurrent Neural Networks (RNN) [28, 51] were the dominant architecture for processing
sequential data. Owing to their inherent recursive nature, RNNs were theoretically proven to be
Turing complete as early as 1996, setting a precedent for neural networks to achieve universal
computational capabilities [94]. Subsequently, LSTM [45] and GRU [17] were proposed to
address the vanishing gradient problem in RNNs, enabling more stable memory states over
long sequences.

A series of research efforts have attempted to prove the Turing completeness of Transformers
from an architectural perspective under certain assumed constraints. Pérez et al. [78] formally
proved for the first time that the Transformer architecture is Turing complete, possessing the
universal capability to execute any computable function. However, the validity of this proof
relies on three crucial theoretical assumptions: Arbitrary Precision, Positional Encodings, and
Hard-Max Attention. Following this idealized and groundbreaking proof, more researchers
began to consider the conditions under which a Transformer can achieve Turing completeness.
Further, Li and Wang [59] proved for the first time that Turing completeness can be achieved un-
der constant numerical precision. This study directly addresses the controversial assumption of
infinite precision from earlier proofs, bringing the theoretical model closer to the computational
constraints of the real world.

Proof of Turing completeness with Chain-of-Thought Additionally, another research path
focuses on achieving more universal computational capabilities through CoT reasoning. Func-
tionally, CoT transforms the Transformer from a limited context window into a dynamic compu-
tational tape. The model employs an autoregressive approach, writing each step’s calculation
result on a notepad and reusing the intermediate results in subsequent calculations. Qiu et al.
[81] proposed that “prompting is Turing complete”. They demonstrate that a single, finite-sized
Transformer, as long as it is given a suitably constructed prompt, can compute any computable
function.This is the first time the Turing completeness of Transformers has been revealed from
the perspective of prompts. Li et al. [63] discovered that a Transformer with constant depth can
simulate a Boolean circuit of size T, provided it is allowed to perform T-step CoT reasoning.
These studies on the Turing completeness of CoT indicate a shift in the definition of general com-
putation. Generality does not necessarily need to be embedded within the model architecture; it
can also be achieved through interaction paradigms using fixed-depth models.
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Enhancing Transformer for Turing Completeness Beyond theoretical proofs, a series of studies
have enhanced the expressive power of Transformers through architectural modifications,
aiming to approach their theoretical limit of Turing completeness. A series of studies have
introduced recurrent mechanisms to break through the fixed depth constraints of Transformers,
as discussed in Section 3. Additionally, some studies have incorporated external memory into
Transformers [10].

A Unifying View of Implicit and Explicit Reasoning The reasoning process of Transformers
can be viewed as “thought unfolding” across two dimensions. The well-known CoT unfolds
along the “horizontal” sequence dimension, creating visible reasoning steps. Meanwhile, the
network’s layer-by-layer computation can be seen as implicit unfolding and refinement of each
token along the “vertical” depth dimension. As discussed above, CoT acts as the scratchpad
between questions and answers, allowing the model to perform reasoning in an auto-regression
mode, theoretically possessing Turing completeness. Meanwhile, each layer of the Transformer
represents an implicit reasoning step, progressively optimizing the prediction of the next token.
Thus, both methods represent a form of computational expansion, differing fundamentally
in whether they unfold across the sequence or through the network’s depth.

Operation Storage Resource
Constraint

Optimization
Objective

Standard CoT Full Model
Forward Pass

Explicit Tokens
In the Sequence

Context Window End-to-end Task

Layer-based
Latent CoT

Single Layer
Forward Pass

Hidden States Layer Nums Next Token
Prediction

Table 3. A comparison of Standard Chain-of-Thought (Horizontal Expansion) and Layer-based
Latent CoT (Vertical Expansion) across key computational dimensions.

Moreover, a series of studies have sought to break the boundary between implicit CoT
and explicit CoT. Chowdhury and Caragea [18] propose Universal Transformers (UTs), which
approach Turing completeness by implementing adaptive computation depth. The core idea
of UTs is to repeatedly apply the same Transformer block across multiple “layers” or computa-
tional steps, thereby introducing a form of recurrence into the architecture. Zelikman et al. [131]
integrate the CoT between layers and CoT between tokens, allowing for the output of interme-
diate thought processes among tokens as well. Furthermore, they proposed Fast Quiet-Star,
which retains the token-level thinking trace while reducing computational cost. Dong et al. [25]
reframed next-token prediction as a reasoning task trained using Reinforcement learning, where
the model receives verifiable rewards for correctly predicting the next token for a given context.

5. Towards Infinite-depth Reasoning

Infinite-depth reasoning refers to an AI’s ability to devote unbounded “thinking time” to refine
and perfect a solution irrespective of output length. In this section we first introduce spatial
infinite-depth reasoning and then temporal infinite-depth reasoning. Spatial infinite-depth
reasoning is realized by diffusion models that begin with a fully masked or noisy draft of the
entire output and iteratively denoise it in parallel: each pass has bidirectional access to the full
context, enabling global planning, logical consistency across distant segments, and iterative
self-correction, with the number of refinement steps adjustable at inference time to trade speed
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Method Unified Latent-Update Formula

Masked Diffusion Models (Temporal-only)

• D3PM [1], SEDD [66], RADD [76]
𝒙𝑙
𝑡+1(𝑖) = 𝑓 (𝒙𝑙𝑡 (𝑖))• MD4 [93], Simple-MDM [83], MDM [74]

• MMaDA [119], IRED [26]

Masked Diffusion Models (With Cache)

• LLaDA [75], dKV-Cache [67], DoT-SEDD [124]
𝒙𝑙+1
𝑡 = 𝑓𝜏(𝒙𝑙𝑡, S𝑙

𝑡)
S𝑙
𝑡+1(𝑖) ≈ 𝑔𝜏(𝒙𝑙𝑡 (𝑖), S𝑙

𝑡 (𝑖))
• dLLM-Cache [65], d1-LLaDA [138], DCoLT [48]
• LLaDA 1.5 [139], MGDM [125]

Embedding-based Diffusion Models

• Diffusion-LM [61], CDCD [24]
𝒙𝑙
𝑡+1 = 𝑓 (𝒙𝑙𝑡, 𝜖𝑡)• Plaid [40], DoT-Plaid [124]

• TESS [68], TESS 2 [102], Bit Diffusion [15]

Hybrid AR-Diffusion Models

• DiffuLLaMA [36], Dream [126] 𝒙𝑙+1
𝑡 = 𝑓𝜏(𝒙𝑙𝑡, S𝑙

𝑡)
S𝑙
𝑡+1(𝑖) = 𝑔𝜏(𝒙𝑙𝑡 (𝑖), S𝑙

𝑡 (𝑖))
+ AR prefix caching

• L2D [12], Gemini Diffusion [33]
• Mercury [55]

Table 4. Text diffusion models organized by cache integration capabilities, showing the evolution
from temporal-only updates to spatial-temporal frameworks with KV cache mechanisms.

for depth of reasoning. Temporal infinite-depth reasoning, by contrast, relies on autoregressive
extensions that generate tokens one at a time in a left-to-right stream and can in principle
produce arbitrarily long sequences—but their irreversible early decisions can accumulate errors
and limit true global coherence.

5.1. Spatial Infinite Reasoning: Text Diffusion Models

Text diffusion models represent a paradigm shift for complex reasoning tasks, offering an
alternative to traditional AR generation. Unlike sequential models that generate text token-by-
token, diffusion models enable spatial infinite reasoning through iterative global refinement. This
approach allows models to engage in holistic planning and develop logical connections across
the entire reasoning chain simultaneously, overcoming the limitations of sequential generation
where early decisions become irreversible constraints. The connection between diffusion models
and infinite depth reasoning lies in their iterative refinement capacity. While traditional models
are constrained by fixed computational depth, diffusion models can theoretically refine reasoning
through unlimited denoising steps. Each step provides additional reasoning depth, allowing
progressive elaboration from high-level plans to detailed solutions.

We organize text diffusion models into three architectural families: Masked Diffusion Models
that enable bidirectional context awareness, Embedding-based Diffusion Models that preserve
structured reasoning while enabling global refinement, and Hybrid AR-Diffusion Models that
combine diffusion and AR paradigms.

23



D3PM Diffusionn-LM

2021
2022

2023SEDD

Bit Diffusion

Plaid
2024

2025

1-6

Masked Diffusion Models

Embedding-based Diffusion Models

Hybrid AR-Diffusion Models

7-12

1-4

5
6

Mercury

d1-LLaDA

CDCD

DoT-SEDD

DoT-PlaidTESS

RADDMD4

Simple-MDM

IRED

MDM

MGDM

LLaDATESS 2

DREAML2D

DiffuLLaMA DCoLT

dKV-Cache

Gemini Diffusion

LLaDA 1.5

MMaDA

dLLM-Cache

Figure 5. An evolutionary graph of the text diffusion models, including three architectural
families: Masked Diffusion Models, Embedding-based Diffusion Models, and Hybrid AR-
Diffusion Models.

5.1.1. Masked Diffusion Models

Masked Diffusion Models (MDMs) exemplify spatial reasoning in text generation. These models
operate on complete text sequences where tokens are initially masked, requiring simultaneous
prediction of all missing tokens based on bidirectional context. This provides full access to the
entire information landscape at each denoising step.

MDMs adopt a latent update mechanism driven by an explicit token-level mask 𝑀𝑡 at each
step 𝑡, the corresponding unified latent-update formulas are described in Table 4. For temporal-
only MDMs, the latent update formula, 𝒙𝑙

𝑡+1(𝑖) = 𝑓 (𝒙𝑙𝑡 (𝑖)), describes how the representation
of an individual token, 𝒙𝑙𝑡 (𝑖), is updated from denoising step 𝑡 to 𝑡 + 1 within a specific layer 𝑙.
This indicates a direct token-level update, where the model’s focus is on iteratively refining the
masked parts of the sequence. For MDMs with cache, two formulas describe the process. The
first formula, 𝒙𝑙+1

𝑡 = 𝑓𝜏(𝒙𝑙𝑡, S𝑙
𝑡), describes the temporal transformation. It shows that at denoising

step 𝑡, the output 𝒙𝑙+1
𝑡 for layer 𝑙 + 1 is generated by a function 𝑓𝜏 that takes the current token

representations 𝒙𝑙𝑡 and the current KV-cache S𝑙
𝑡 as input. This indicates that the Transformer

block’s processing for generating token representations directly leverages the KV-cache for
spatial context.

The iterative unmasking process enables sophisticated reasoning capabilities impossible
in sequential generation. Some pioneers provide a strong foundation for masked diffusion
models and supporting reasoning tasks through better input, intermediate steps, and out-
puts. D3PM [1] goes beyond corruption processes with uniform transition probabilities, while
SEDD [66] introduces the EBLO loss that naturally extends score matching to discrete spaces.
Further refinements, like RADD [76], MD4 [93], and Simple-MDM [83], have streamlined train-
ing through hybrid masked losses, facilitating conversion of encoder models like BERT into
effective generative reasoning systems. Besides, MMaDA [119] adopts a unified diffusion
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architecture for multi-modal reasoning and aligns reasoning processes between textual and
visual domains. Research has shown that MDMs can be scaled effectively, achieving strong
performance and efficiency [74]. IRED [26] framed reasoning as an energy minimization process
implemented through diffusion models. This approach enables iterative refinement from vague
reasoning paths to precise solutions, particularly effective for multi-constraint problems. Energy
diffusion demonstrated significant advantages over traditional methods in complex reasoning
tasks. The LLaDA model [75] uses discrete random masking, enabling sophisticated capabilities
like reverse-order reasoning. To accelerate masked diffusion language models, dKV-Cache [67]
introduces a delayed and conditioned key–value caching strategy that achieving up to 2-10×
inference speedup. dLLM-Cache [65] introduces an adaptive caching strategy achieves up to
9.1× speedup over the standard inference method of LLaDA [75]. DoT-SEDD [124] subsequently
generalized chain-of-thought (CoT) reasoning to the MDM framework, enhancing coherence
and accuracy through natural self-correction, with particular strengths in mathematical rea-
soning. The framework has been extended through Multi-Granularity Diffusion Modeling
(MGDM) [125], which prioritizes difficult subgoals and achieves state-of-the-art results on com-
plex planning tasks. d1-LLaDA [138] introduces diffu-GRPO, a lightweight policy-gradient
algorithm tailored to masked diffusion models that surpasses SFT across mathematical and
planning benchmarks. LLaDA 1.5 [139] advances this line with VRPO, which combines un-
biased Monte-Carlo budget allocation and antithetic sampling to sharply reduce the variance
of ELBO-based preference optimization. DCoLT [48] applies outcome-based reinforcement
learning by using a probabilistic policy or ranking-based Unmasking Policy Module to jointly
optimize the entire reasoning trajectory.

5.1.2. Embedding-based Diffusion Models

Embedding-based diffusion models (EDMs) extend the paradigm of spatial reasoning by first
mapping discrete token sequences into continuous token embeddings and then operating
on these embeddings, where they are disrupted with Gaussian noise. The models denoise
every latent vector using bidirectional context, enjoying complete visibility of the information
landscape at each refinement step. Although this high-level objective mirrors that of MDMs,
EDMs inhabit a fundamentally different design space due to their continuous embeddings
formulation.

EDMs achieve latent update by applying noise to all tokens uniformly and allow denois-
ing dynamics to determine recovery, the corresponding unified latent-update formulas are
described in Table 4. The formula describes how the representation of the entire sequence’s
tokens, 𝒙𝑙𝑡, is updated from denoising step 𝑡 to 𝑡 + 1 for a given layer 𝑙, enabling iterative refine-
ment within the continuous latent space. The function 𝑓 represents the diffusion model’s core
denoising network (typically a Transformer), taking the current noisy embeddings 𝒙𝑙𝑡 and a noise
term 𝜖𝑡 to compute the denoised embeddings. Conceptually, this process operates on the entire
sequence’s embedding representation, rather than specific parts of individual tokens or their
hidden states.

Early EDM research emphasized controllable generation [61] and sequence-to-sequence
tasks [24, 68], as well as efficient latent encodings of discrete sequences [15, 40, 102]. Plaid [40]
systematically characterizes the capacity of this model family by deriving empirical scaling laws,
closing the compute-efficiency gap with autoregressive language models to 64×. DoT-Plaid [124]
subsequently generalized chain-of-thought (CoT) reasoning to the EDM framework, allowing
entire reasoning paths to evolve through iterative latent refinement and enhancing coherence and
accuracy through natural self-correction, with particular strengths in mathematical reasoning.
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5.1.3. Hybrid AR-Diffusion Models

The third family explores direct integration of diffusion and autoregressive paradigms, creating
hybrid systems that leverage complementary strengths. These models recognize that while
diffusion excels at global planning, autoregressive generation remains effective for certain
sequential dependencies.

Hybrid AR-Diffusion models integrate autoregressive generation with diffusion-based
latent refinement, combining the strengths of sequential coherence and bidirectional reason-
ing. The corresponding unified latent-update formulas are described in Table 4. The formula
𝒙𝑙+1
𝑡 = 𝑓𝜏(𝒙𝑙𝑡, S𝑙

𝑡) details the temporal transformation. Here, a Transformer block 𝑓𝜏 refines token
representations 𝒙𝑙𝑡 from layer 𝑙 to 𝑙 + 1 at denoising step 𝑡. This refinement explicitly uses the
current KV-cache S𝑙

𝑡. Crucially, this temporal update is enhanced by AR prefix caching, which
brings in forward-context alignment from the already generated text 𝑥<𝑡. The second formula
governs the spatial update of the KV-cache for individual token 𝑖. This update is driven by
the function 𝑔𝜏 that takes the token’s representation 𝒙𝑙𝑡 (𝑖) and its old cache S𝑙

𝑡 (𝑖) as input. The
explicit inclusion of “AR prefix caching” in this formula indicates that the KV-cache update
directly incorporates AR prefix caching mechanisms, enhancing the cache with forward context.
This allows the model to dynamically stabilize reliable representations, focusing refinement on
uncertain tokens while leveraging the strength of pre-existing sequential information.

DiffuLLaMA [36] introduces a continual pre-training approach that converts existing autore-
gressive models (like GPT-2 and LLaMA) into diffusion models, which provides a powerful
and scalable tool for complex reasoning tasks that demand efficient and flexible text processing.
L2D [12] uses a modular design integrating a diffusion pipeline with a pre-trained autoregres-
sive model, creating synergy between global reasoning and sequential fluency. The Dream
model [126] leverages autoregressive initialization for training stability and context-adaptive
noise scheduling. By leveraging a diffusion method for parallel, coarse-to-fine token generation,
commercial frameworks such as Gemini Diffusion [33] and Mercury [55] significantly boost
the speed and efficiency of code processing in large language models. This provides a more
effective solution for latency-sensitive reasoning tasks like chain-of-thought and agentic work-
loads. These hybrid approaches represent a promising direction, acknowledging that different
reasoning aspects may benefit from different computational paradigms.

5.2. The optimization-Based Perspective: Trading Time for Depth

The optimization-based perspective introduced in Section 3.2.2 suggests that time itself can be
traded for network depth. When the hidden state S𝑡 is updated by a gradient-like rule S𝑡 =

S𝑡−1 − 𝜂𝑡∇Sℓ(S𝑡−1; k𝑡, v𝑡), each additional token performs one extra step of a (stochastic) optimizer
that refines an implicit layer. Consequently, processing a longer sequence is mathematically
equivalent to running the same layer for more optimization iterations, thereby yielding greater
reasoning depth without adding parameters. This observation converts the long-context
challenge into a new question: how can we instantiate a network of unbounded depth that
remains trainable and efficient?

5.2.1. Towards an ’Infinitely Long’ Optimizer Network

Recent work pursues three complementary strategies:
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Infini-attention: Munkhdalai et al. [72] attach a compressive memory to every Transformer
block. Each incoming segment updates this memory via a linear–delta rule that asymptotically
approaches the fixed-point of an associative array, allowing the model to stream infinitely
long inputs with O(1) memory. However, a reproduction [73] attempt documented significant
practical challenges with this approach. Their key finding was that the model’s long-context
performance degraded as the number of memory compression steps increased. The authors
also reported severe convergence issues, particularly with the gating parameters that balance
local and compressed memory, ultimately concluding that the technique was not reliable for
extending pretrained models. This empirical evidence suggests that while the idea of memory
compression is promising, the specific mechanism in Infini-attention may not be effective in
practice, and other methods like rope scaling or Ring Attention are currently more viable options.

Test-time training (TTT) and its descendants: Sun et al. [100] pioneered the idea of performing
a few steps of SGD on the hidden state during inference. Follow-up models like Titans [3],
OmegaNet and Atlas [4], replace first-order updates with Adam- or Muon-style optimizers
and introduce chunk-wise parallelism so that 106–token streams can be handled on modern
accelerators. Empirically, Titans-S (∼250 M) already matches a 1.3 B Transformer on 1-shot recall
after only ∼1 M optimization steps, demonstrating that “deeper through time” can substitute for
“deeper via layers”.

In contrast to methods relying on frequent, small-batch updates, recent work [136] argues
that this strategy suffers from severe computational inefficiency due to low hardware utilization.
The proposed solution, Large Chunk Test-Time Training (LaCT), advocates for the opposite:
updating "fast weights" using extremely large chunks of data, ranging from thousands to over a
million tokens. This large-chunk paradigm dramatically improves hardware utilization without
custom kernels and, more importantly, enables the scaling of nonlinear state sizes to a much
larger fraction of the model’s parameters (up to 40%). This enhanced state capacity, combined
with sophisticated optimizers like Muon, has been validated across diverse tasks, including
novel view synthesis, language modeling, and autoregressive video diffusion.

Implicit Fixed-Point RNNs: An orthogonal line of work revisits classical RNNs through the
lens of implicit layers. Schöne et al. [87] show that iterating a state-space block until conver-
gence yields non-linear, non-diagonal transitions that recover the expressivity of general RNNs
while retaining training parallelism. Practically, one runs only a small, adaptive number of
self-iterations (⩽ 16 for most natural-language tokens), giving another route to unbounded
depth: the model simply halts when additional refinement becomes irrelevant.

5.2.2. A Unifying View

All three families embody the same principle:

Depth emerges from optimization over time.

The hidden state plays the role of a “fast-weight” layer whose parameters are refined either
explicitly (TTT, Titans, Atlas), implicitly (fixed-point RNNs), or through an associative cache
(Infini-attention). Longer sequences therefore unlock deeper reasoning. Crucially, chunk-wise
scans and parallel fixed-point solvers keep the wall-clock cost nearly linear, enabling experiments
with million-token contexts on a single GPU.
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6. Discussion and Conclusion

This survey provides a comprehensive overview of Latent CoT and reasoning, an emerging
paradigm in AI reasoning. While large language models have demonstrated impressive rea-
soning using explicit CoT that verbalizes intermediate steps, this approach is limited by the
expressive bandwidth of natural language. Latent CoT addresses this by shifting the entire
reasoning process into the model’s continuous hidden state, aiming to enhance expressive power
and performance. By operating in a continuous space, the model is freed from the constraints of
a finite token vocabulary and can explore more efficient and powerful reasoning strategies that
may not have direct linguistic equivalents.

Latent reasoning methodologies primarily follow two paradigms: vertical and horizontal
recurrence. Vertical recurrence, or activation-based methods, expands computational depth by
iteratively refining information within the same set of layers, either through explicit architectural
loops or induced through specialized training. In contrast, horizontal recurrence, or hidden-
state-based methods, expands the model’s temporal capacity by evolving a compressed hidden
state over long sequences, allowing for the integration of vast amounts of information. These
approaches are complemented by mechanistic interpretability research, which examines how
different network layers specialize to form an implicit computational pipeline analogous to an
explicit CoT.

Notably, this survey does not offer a direct empirical comparison across these varied models.
The field is developing rapidly, with different models being created under disparate training
conditions—some are pre-trained from scratch, while others are adapted from existing foun-
dation models via continual pre-training. Furthermore, most studies compare their models to
non-reasoning LLM baselines rather than to each other. This lack of consistent training method-
ologies and standardized benchmarks currently makes a direct, apple-to-apples comparison of
empirical results challenging. It is our hope that a unified evaluation framework will emerge in
the future to enable a clearer assessment of the relative strengths of these approaches.

The survey culminates by exploring the frontier of infinite-depth reasoning, which aims
to give models the ability to use unbounded computational steps to refine a solution. Text
diffusion models are a key innovation in this area, as they operate on the entire output sequence
in parallel. This allows for global planning, iterative self-correction, and logically consistent
reasoning processes that are not constrained by sequential, irreversible decisions. By unifying
these perspectives, the survey charts the conceptual landscape of latent reasoning and points
toward future directions in advanced AI cognition.
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